Interfacial fracture toughness of Pb-free solders
نویسندگان
چکیده
Increasing environmental concerns and pending government regulations have pressured microelectronic manufacturers to find suitable alternatives to Pb-bearing solders traditionally used in electronics packaging. Over recent years, Sn-rich solders have received significant attention as suitable replacements for Pbbearing solders. Understanding the behavior of intermetallics in Sn-rich solders is of particular concern as the microelectronics industry progresses towards Pb-free packaging. The formation of intermetallic compounds results from the reaction of the solder with the metallization on the substrate in the electronic package. While the presence of the intermetallic is an indication of good wetting, excessive growth of the intermetallic can have a dramatically adverse effect on the toughness and reliability of the solder joint. Understanding their fracture behavior will lend insight to their reliability under mechanical and thermomechanical strains. We investigated the intermetallic compound growth associated with Sn–0.7Cu and Sn–4.0Ag–0.5Cu solders on Ni–Au, Ni–Pd, and Cu substrates. (Ni,Cu)3Sn4 was present at the Ni interface for both solders but was coarser in the case of Ni–Pd. Cu6Sn5 and Cu3Sn were observed for both solder types. The Cu3Sn layer was similar in thickness and appearance for both solders, but the Cu6Sn5 was smoother and rounder in the case of Sn–0.7Cu. Additional time above liquidus resulted in growth of the Cu6Sn5 layer and eventual spalling of the IMC grains. The effect of the intermetallic on the toughness (KQ) of the solder joint was investigated using a modified compact tension specimen. Typical failure modes included bulk solder failure, intergranular separation, and intermetallic fracture, or cleavage. In some cases, additional time above solder liquidus was used to shift the dominant failure mode from that dominated by the bulk solder to interfacial delamination through the intermetallics. Solder joint fracture toughness was different between Ni–Sn and Cu–Sn interfacial intermetallics and was also affected by the relative intermetallic thickness. The relationship between solder and intermetallic microstructure and mechanical properties
منابع مشابه
Drop impact reliability testing for lead-free and lead-based soldered IC packages
Board-level drop impact testing is a useful way to characterize the drop durability of the different soldered assemblies onto the printed circuit board (PCB). The characterization process is critical to the lead-free (Pb-free) solders that are replacing lead-based (Pb-based) solders. In this study, drop impact solder joint reliability for plastic ball grid array (PBGA), very-thin quad flat no-l...
متن کاملA review: On the development of low melting temperature Pb-free solders
Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and elsewhere having moved to restrict the use of Pb, it is imperative that new Pb-free solders are developed which can meet the long established benchmarks set by leaded solders and improve on the current generation of Pb free solders such as SA...
متن کاملEffects of Minor Alloying Additions on the Properties and Reliability of Pb-free Solders and Joints
Since July, 2006, following the EU’s RoHS legislation, the consumer electronics industry has been offering “green” products by eliminating Pb-containing solders and other toxic materials. This transition has been relatively smooth, because the reliability requirements are less stringent. However, the Pb-free transition for high performance electronic systems (such as servers and telecommunicati...
متن کاملFracture Toughness سطح اتصال رزین کامپوزیتی و سرامیک
Statement of Problem: In a previous study it was reported that a durable resin-ceramic tensile bond could be obtained by an appropriate silane application without the need for HF acid etching the ceramic surface. Evaluation of the appropriate application of silane by other test methods seems to be necessary. Purpose: The purpose of this study was to compare the interfacial fracture toughness of...
متن کاملFracture Toughness of Wood and Wood Composites during Crack Propagation
The mode I fracture toughness as a function of crack length of medium density fiberboard (MDF), particle board (PB), and Douglas-fir (DF) were all measured using a new energy-based method. PB and MDF are examples of composites that develop fiber bridging during crack propagation, which causes their toughness to increase with crack length. Longitudinal cracks in DF also displayed fiber bridging ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics Reliability
دوره 49 شماره
صفحات -
تاریخ انتشار 2009